4000-520-616
欢迎来到免疫在线!(蚂蚁淘生物旗下平台)  请登录 |  免费注册 |  询价篮
主营:主营:电子研究设备,组件
咨询热线电话
4000-520-616
当前位置: 首页 > 产品中心 > peptide > Ossila/三重阳离子钙钛矿前驱体墨水(用于氮气处理)/10 x 0.5 ml(总共5 ml)/I301
商品详细Ossila/三重阳离子钙钛矿前驱体墨水(用于氮气处理)/10 x 0.5 ml(总共5 ml)/I301
Ossila/三重阳离子钙钛矿前驱体墨水(用于氮气处理)/10 x 0.5 ml(总共5 ml)/I301
Ossila/三重阳离子钙钛矿前驱体墨水(用于氮气处理)/10 x 0.5 ml(总共5 ml)/I301
商品编号: I301
品牌: Ossila inc
市场价: ¥3980.00
美元价: 2388.00
产地: 美国(厂家直采)
公司:
产品分类: 多肽合成
公司分类: peptide
联系Q Q: 3392242852
电话号码: 4000-520-616
电子邮箱: info@ebiomall.com
商品介绍

I301 perovskite ink has been formulated in conjunction with our research partners to obtain the highest possible PCEs. Our I301 perovskite ink is designed for processing inside controlled environments such as a nitrogen-filled glovebox.

Ossila’s I301 contains a formulation of Methylammonium Bromide (MABr), Lead Bromide (PbBr2), Formamidinium Iodide (FAI), Lead Iodide(PbI2) and Caesium Iodide (CsI) in DMSO solvent. After undergoing conversion through a combination of solvent quenching and thermal annealing steps, I301 ink can be used to create a (Cs0.05FA0.81MA0.14)Pb(I0.85Br0.15)3 perovskite film. For information on the various application of this mixed-cation perovskite, see our applications section.

The main use of I301 is in the fabrication of solar cells. The process recipe for I301 is optimised for glovebox processing under a nitrogen atmosphere. This ink is designed to be used with the device architecture ITO-coated glass/SnO2/perovskite/Spiro-OMeTAD/Au. PV devices using this architecture achieved an average / peak power conversion efficiency (PCE) of (16.4% ± 3.9)% / 19.0%. (see our device performance section for more information). The ink specifications can be found below along with complete guides on the processing of perovskite inks for standard architecture. Using our provided I301 recipe, 5 ml of solution is capable of processing up to 100 substrates (800 devices using our 8-pixel substrate design).

 

Perovskite Ink
I301 is packaged as 10 individual vials containing 0.5 ml of solution each, capable of coating up to 100 substrates.

 

I301 Perovskite Specifications

Perovskite type

(Cs0.05FA0.81MA0.14)Pb(I0.85Br0.15)3

Precursor materials (purity)

Formamidinium iodide (98%), lead iodide (99.999%), methyl ammonium bromide (98%), lead bromide (99.999%), Caesium Iodide

Precursor ratio

1.00 : 1.05 : 0.18 : 0.19 : 0.06

Solvent (purity)

Dimethyl sulfoxide (99.8%)

Optical bandgap

1.5-1.6 eV

Emission peak

787 nm 

Standard architecture PCE

19.0% Peak; 16.4% ± 3.9% Average

Processing conditions

Inert environment only (e.g. nitrogen or argon atmosphere)

Packaging

10 x 0.5 ml sealed amber vials

Storage Conditions

Must be kept refrigerated. Only open in an inert atmosphere.

 

I301 Perovskite Applications

Perovskite Photovoltaics: Multiple cation inks are used to create high efficiency devices, regularly achieving over 20% (see the papers cited below). Double cation inks contain two organic A-cations: methylammonium (CH3NH3+,MA) and formamidinium (CH3(NH2)2+,FA) - for more information on the role of A-cations in perovskite crystals, see our perovskite and perovskite solar cells introduction . Double cation perovskites produce impressive intial PCEs but have thermal and phase instabilities, due to the volatility of MA and the phase instability at room temperature of FA-based perovskites. By adding a small amount of Caesium to the precursor, high efficiency devices of 21.1% can maintain over 80% of their initial efficiency after 250 hours of device ageing. Below are a series of papers studying multiple cation perovskite inks. 

    • Analysis of the UV–Ozone‐Treated SnO2 Electron Transporting Layer in Planar Perovskite Solar Cells for High Performance and Reduced Hysteresis. P. F. Mendez et. al. Solar RRL. 3 (2019) DOI: 10.1002/solr.201900191
    • An Interface Stabilized Perovskite Solar Cell with High Stabilized Efficiency and Low Voltage Loss. J. J. Yoo et. alEnergy Environ. Sci.12 (2019) 2192-2199 DOI: 10.1038/nature14133
  • How To Make Over 20% Efficient Perovskite Solar Cells In Regular (N-I-P) And Inverted (P-I-N) Architectures. M. Saliba et al. Chem. Mater. 30 (2018) 4193–4201 DOI: 10.1021/acs.chemmater.8b00136. 
  • Cesium-Containing Triple Cation Perovskite Solar Cells: Improved Stability, Reproducibility And High Efficiency. M. Saliba et al. Energy Environ. Sci. (2016) 1989–1997 DOI: 10.1039/c5ee03874j. 

The formulation of triple cation inks varies amongst the literature. Researchers working with Ossila have optimised the I301 ink to produce a high performance ink with impressive lifetime in solution.

I301 Perovskite Processing Guides

Standard Architecture: ITO-coated glass/SnO2/perovskite/Spiro-OMeTAD/Au

Below is a condensed summary of our fabrication routine for standard architecture devices using our I301 ink:

 

  1. ITO etching:
  • A complete guide to FTO/ITO etching can be found on our FTO product page along with an instructional video
  1. Substrate cleaning:
  • Rub ITO between (gloved) fingers with DI water containing Hellmanex then rinse with water. This is a very important step in the cleaning process.
  • Rinse thoroughly in boiling DI water, sonicate for a few minutes in DI water if you want to be extra cautious.
  • Rinse and sonicate ITO for 15 minutes in isopropyl alcohol (IPA)
  • Dry ITO using filtered compressed gas
  • Place the ITO into the UV Ozone cleaner and clean for 15-20 minutes
  1. SnO2 ETL deposition:
  • Create a 4:1 suspension of 15% SnO2 nanoparticles in DI water
  • Statically spin coat 50ul of SnO2 onto substrate fresh from UV ozone 3000rpm for 30s.
  • Using a cotton bud and DI water, wipe away the SnO2 layer where the conductive busbars are to be deposited.
  • Anneal for 40 mins at 150°C.
  1. Perovskite deposition (in glovebox):
  • Transfer the substrates into an inert environment glovebox
  • Place substrates inside the spin coater.
  • Dispense 35 μl of I301 ink onto the substrate. Spin the substrate at 1000 rpm for 10s. After this initial spin step, increase the speed to 3000 rpm over 28s. 13 seconds into the 3000 rpm spin step, dispense 100μl of ethyl acetate to quench the perovskite and leave to spin for a further 15 s (the quenching should be done using a continuous stream of solvent over ~1 s)
  • Place substrate back onto the hotplate at 130°C for 10 minutes.
  1. Spiro-OMeTAD deposition (in glovebox):
  • Prepare the following solutions:
    • Spiro-OMeTAD at a concentration of 85 mg/ml in chlorobenzene
    • Li-TFSI at a concentration of 500 mg/ml in acetonitrile
    • TBP at a volumetric percentage of 98%.
    • FK209 Co (III) TFSI at a concentration of 300 mg/ml in acetonitrile
  • Combine 1000 μl Spiro-OMeTAD, 20μl Li-TFSI, 34μl TBP and 11μl of FK209 Co (III) TFSI
  • Ensure complete solvation of dopants within solution (e.g. vortex for 5 minute/stir overnight) and filter mixture directly before use.
  • Start spinning at 4000 rpm for 30 seconds
  • Dynamically dispense 25 µl of the combined solution onto the perovskite to create a thin even layer.
  1. Spiro-OMeTAD oxidation and anode deposition:
  • Remove devices from the glovebox. The spiro-OMeTAD layer will require further oxidation to achieve optimal device performance; this should be achieved after 12 hours of storage in air
  • Using tweezers or a razor, scratch away the perovskite and spiro-OMeTAD layer where the conductive busbars are to be deposited (see multi electrode/busbar masks for information on the location of busbars)
  • Using thermal evaporation, deposit an 80 nm layer of gold through a shadow mask to define an active area for your device (we recommend the use of Ossila"s multi electrode/busbar mask for optimal device performance)
  • Devices measured immediately after being taken out of the glovebox have a PCE 1% lower on average than devices left in air for 12 hours and can be up to 3% lower in extreme cases.

 For a more in-depth device fabrication process, refer to theabove papers.

I301 Device Performance

Standard Architecture Structure

Below is information on photovoltaic devices fabricated using our standard architecture recipe for I301 inks. All scans were taken under AM1.5 illumination, sweeping the voltage from -0.2 V to 1.2 V then from 1.2 V to -0.2 V at a rate of 0.2 V.s-1 ; no bias soaking was performed on devices.

Best Device Performance
Sweep directionForwardReverse
Power conversion efficiency (%)19.318.9
Short circuit current (mA.cm-2)-22.4-22.3
Open circuit voltage (V)1.081.09
Fill factor (%)79.777.8

 

Average Over 20 Devices on 5 SubstratesEdge pixels omitted
Power conversion efficiency (%)16.4 ± 3.9
Short circuit current (mA.cm-2)-21.2 ± 0.9
Open circuit voltage (V)1.01 ± 0.20
Fill factor (%)73.9 ± 11.9

 

Current Density Vs Voltage Graph for I301
JV sweep for Best Performing Device
Stabilised PCE graph for I301
Stabilised PCE for Best Performing Device

 

To the best of our knowledge, the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.

品牌介绍
关于奥西拉 Ossila由有机电子研究科学家于2009年成立,旨在提供组件,设备和材料,以实现智能,高效的科学研究和发现。十多年来,我们很自豪能向全球80多个国家/地区的1000多个不同机构提供产品。 凭借在开发有机和薄膜LED,光伏和FET方面数十年的学术和工业经验,我们知道建立可靠,高效的器件制造和测试过程需要花费多长时间。因此,我们开发了相关的产品和服务包-使研究人员能够快速启动其有机电子产品开发计划。 奥西拉保证 全球免费送货 合格的订单可免费运送到世界任何地方 快速安全调度 通过安全跟踪的快递服务快速配送库存物品 质量保证 由所有设备的免费两年保修提供支持 清除前期定价 超过30种货币的清晰定价,无隐藏成本 大订单折扣 保存超过订单8% $ 10,300.00和10%以上的订单 $ 12,900.00 专家支持 我们内部的科学家和工程师随时准备为您提供帮助 全球信赖 优质的产品和服务。已经向很多人推荐。 卡尔加里大学Gregory Welch博士 优质产品价格合理的客户友好公司! Shahriar Anwar,亚利桑那州立大学 奥西拉团队 David Lidzey教授-主席 作为谢菲尔德大学的物理学教授,David Lidzey教授领导该大学的电子和光子分子材料研究小组(EPMM)。David在其职业生涯中,曾在学术和技术环境中工作,主要研究领域包括混合有机-无机半导体材料和器件,有机光子器件和结构以及溶液处理的光伏器件。在整个学术生涯中,他撰写了220多篇同行评审论文。 James Kingsley博士-董事总经理 James是Ossila的联合创始人兼董事总经理。他拥有量子力学/纳米技术博士学位,并在有机电子领域拥有超过12年的经验,他在有机光伏制造产能方面的工作导致了Ossila的成立并建立了强大的指导精神:加快科学发现的步伐。James对开发创新的设备以及改善可溶液加工的光伏和混合有机-无机设备新材料的可及性特别感兴趣。 Alastair Buckley博士-技术总监 Alastair是谢菲尔德大学的物理学讲师,专门研究有机电子学和光子学。他还是EPMM研究小组的成员,致力于研究功能有机材料的内在优势并将其应用到一系列光电设备中。Alastair的经验并非仅在学术界获得。他曾领导MicroEmissive Displays的研发团队,因此在OLED显示器方面拥有丰富的技术经验。他还是Elsevier的“有机发光二极管”的编辑和撰稿人。 我们的研究科学家 我们的研究科学家和产品开发人员在材料的合成和加工以及设备的制造和测试方面拥有丰富的经验。奥西拉(Ossila)的愿景是与学术界和工业界的研究人员分享这一经验,并提高他们的研究效率。通过提供无需费力设备制造过程的产品和服务,以及能够进行准确,快速测试的设备,我们就可以使科学家们腾出时间专注于他们最擅长的工作-科学。 客户服务团队 客户服务团队负责奥西拉的客户旅程。从创建和提供报价到采购和库存管理,客户服务团队致力于提供一流的客户服务。客户服务团队成员的日常职责包括处理客户订单和价格查询,回答客户查询,安排包裹运输以及将订单更新通知客户。 合作与伙伴关系 请联系客户服务团队以解决所有疑问,包括有关Ossila产品的技术问题或有关制造和测量过程的建议。 位置及设施 奥西拉(Ossila)设在谢菲尔德阿特克利夫(Attercliffe)的Solpro商业园区。 我们在现场运营一个专门建造的合成化学和设备测试实验室,在这里制造我们所有的高纯度,批次特定的聚合物和其他配方。此外,设备制造集群内的专用薄膜和有机电子测试与分析工具套件也位于谢菲尔德EPSRC国家外延设施的1000级无尘室中。 我们所有的电子设备均在现场制造。