4000-520-616
欢迎来到免疫在线!(蚂蚁淘生物旗下平台)  请登录 |  免费注册 |  询价篮
主营:主营:电子研究设备,组件
咨询热线电话
4000-520-616
当前位置: 首页 > 产品中心 > membrane > Ossila/PEDOT:PSS | PH1000, AI4083, HTL Solar & HTL Solar 3/AI 4083 - 100 ml/M121-100ml
商品详细Ossila/PEDOT:PSS | PH1000, AI4083, HTL Solar & HTL Solar 3/AI 4083 - 100 ml/M121-100ml
Ossila/PEDOT:PSS | PH1000, AI4083, HTL Solar & HTL Solar 3/AI 4083 - 100 ml/M121-100ml
Ossila/PEDOT:PSS | PH1000, AI4083, HTL Solar & HTL Solar 3/AI 4083 - 100 ml/M121-100ml
商品编号: M121-100ml
品牌: Ossila inc
市场价: ¥3520.00
美元价: 2112.00
产地: 美国(厂家直采)
公司:
产品分类:
公司分类: membrane
联系Q Q: 3392242852
电话号码: 4000-520-616
电子邮箱: info@ebiomall.com
商品介绍

PEDOT:PSS and PEDOT dispersions for a range of applications

AI 4083, PH 1000, HTL Solar and HTL Solar 3 for thin-film electronic fabrication

PEDOT:PSS, or Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, is a transparent conductive polymer consisting of a mixture of the ionomers poly(3,4-ethylenedioxythiophene) and polystyrene sulfonate. Due to its unique combination of conductivity, transparency, ductility, and ease of processing, PEDOT:PSS has become a benchmark material in thin-film electronic fabrication.

Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate can be used as an interfacial layer for hole transport in organic light emitting diodes, organic photovoltaics, and perovskite photovoltaics. It can also be used as a replacement for transparent conductors such as ITO or FTO and is used commonly in applications where the underlying substrate is flexible.

Ossila supplies a range of PEDOT:PSS and PEDOT dispersions that are suitable for different applications.

AI 4083

Order code M121

Deep work function of 5.0 - 5.2 eV

For interfacial layers in photovoltaic (OPV) and light emitting diodes (OLED)

£176

PH 1000

Order code M122

High conductivity and optical transparency

For high conductivity films and interfacial layers

£176

HTL Solar

Order code M124

Improved wetting properties, particularly in inverted OPV cells

For surfaces that are difficult to wet with an aqueous dispersion

£176

HTL Solar 3

Order code M125

Uses an alternative counter ionomer to PSS to allow for the dispersion in toluene

For use with perovskite materials and whenever water-based dispersion is problematic

£196

PEDOT:PSS typically comes as a water based emulsion which is created via the polymerization of PEDOT monomers in a polystyrene sulfonic acid solution. We supply all our PEDOT:PSS solutions in light resistant bottles with temperature indicators.

Properties

The properties of PEDOT:PSS vary from dispersion to dispersion, hence its versatility. The key properties of PEDOT:PSS are the extent to which it is conductive and the size of its work function. Since PEDOT is conductive and PSS insulating, the conductivity of the resulting polymer depends on ratio between these two ionomers and the microstructure of the film. Similarly, a higher presence of PSS at the surface will result in a deeper work function.

Applications

PEDOT:PSS is used for a range of applications within thin-film electronic fabrication, including:

  • Perovskite photovoltaics
  • Organic photovoltaics
  • Organic electrochemical transistors
  • Flexible electronics
  • Organic light emitting diodes
  • Transparent conductors
  • Thermoelectric generators
  • Supercapitors and energy storage

Substrate surfaces should be prepared before the deposition of PEDOT:PSS to ensure that they are clean. This can be done using DI water, Hellmanex iii, isopropyl alcohol and a UV Ozone Cleaner. Once the surface is ready, a spin coater can be used to create a PEDOT:PSS thin film.

Please see the "usage" tab for more information.

PEDOT being added to a spin coater
PEDOT Deposition with the Ossila Spin Coater

What Makes PEDOT:PSS Conductive?

The electrical conductivity of oxidized polythiophenes has been known about for nearly 40 years. The origins of this conductivity are due to the presence of radical states which are formed due to the oxidation of the thiophene units. These reduced states are delocalized across the polymer chain, and in the presence of the oxidizer these radicalized states can be stabilized. In PEDOT:PSS the PEDOT is oxidized during the polymerisation reaction by the polystyrene sulfonate. This produces an emulsion where the PSS present stabilizes the radical states on the PEDOT.

Although PEDOT itself is conductive, the PSS present within the blend is insulating. The quantity of PSS and the microsctructure of the film therefore have a significant impact on the electronic properties of PEDOT:PSS. In a water based dispersion the PEDOT and PSS form a micelle structure in which the hydrophobic PEDOT core is surrounded by a shell of hydrophilic PSS. During deposition this structure is retained forming localized regions of conductive PEDOT surrounded by insulating regions of PSS. It is this core-shell structure which results in the low conductivity values that can arise for standard formulations of PEDOT:PSS.

Can the Conductivity of PEDOT:PSS be Improved?

Advanced formulations offer increased conductivity of PEDOT:PSS thin films. This is achieved by the addition of secondary solvents (sometimes referred to as secondary dopants) to the solution or exposing thin films to these secondary solvents.

It was originally believed that these solvents acted by further doping the PEDOT, hence the name secondary dopant. More recent work has revealed that their presence changes the core-shell structure that is normally seen. When exposed to these solvents the hydrophilic/hydrophobic nature of the PSS/PEDOT components no longer determine the structure. The solvents allow the diffusion and intermixing of the PEDOT and PSS chains creating a more homogenous film on the microscale. This homogenisation increases the path length of charges along the PEDOT chain reducing the distance that charges must travel across PSS rich areas.

What Determines the Work Function of PEDOT?

As work function is a surface property of a material the work function of the PEDOT:PSS blend will be determined by the percentage of each component at the surface of the film. PSS has a significantly deeper work function than PEDOT, therefore a higher presence of PSS at the surface will result in a deeper work function. This means that for formulations with higher percentages of PSS, the work function will be higher than those with lower percentages.

In addition, the processing of the PEDOT:PSS film can result in changes to the work function. When PEDOT:PSS forms a core-shell structure, PEDOT is surrounded by PSS. In this case the work function will be dominated by PSS. If the film has been treated such that the components are more homogenously dispersed, however, the work function will become more shallow as the surface becomes richer with PEDOT.

How Should PEDOT Materials be Stored?

The recommended storage temperature of PEDOT:PSS dispersions is 5 - 10 degrees Celsius. Therefore it is recommended that you store the dispersion at the front of a refrigerator. The product is not usable if frozen and should therefore should be kept away from the back of the refrigerator (where it is coldest).

The dispersions can tolerate a few days to a week outside of the refrigerator (e.g. during shipping) without negative consequences on the PEDOT:PSS performance. Over time at elevated temperatures, the PEDOT:PSS can phase separate, aggregate and form a solid that drops to the bottom of the bottle, reducing performance. Brief heating to a max. of 50°C however has no adverse effect on product properties.

What is the Shelf Life of PEDOT Materials?

When stored at 5 - 10 degrees Celsius, the PEDOT:PSS dispersion will give you consistent performance over 12 months when used regularly. The official recommended shelf life from the manufacturer is 9 months after production, if the dispersion is never used or disturbed. After this time, the dispersion will gradually separate/sediment out at a very slow rate, resulting in lower concentrations and ultimately thinner films.

This degradation is mitigated by frequent use of the dispersion due to the gentle agitation caused when decanting. Through constant use, it is possible to use a single bottle of PEDOT:PSS for many years without harming device performance.

PEDOT:PSS (AI 4083)

Heraeus Clevios™ AI 4083 is one of the most commonly used PEDOT:PSS formulations, due to its deep work function it is often used for matching of interfacial energy levels in thin film electronic devices.

AI 4083 specifications and MSDS

Resistivity500-5000 Ω.cm
Solid content1.3 to 1.7 wt.% (in water)
Viscosity5-12 mPa.s
PEDOT:PSS ratio1:6
Particle Size DistributionD90 = 100nm; D50 = 80nm
Work function5.0 - 5.2 eV
CAS number155090-83-8
Packaging100 ml of solution sealed in a light resistant bottle with temperature indicator

PEDOT:PSS (PH 1000)

Heraeus Clevios™ PH1000 PEDOT:PSS is designed for applications where high conductivity and optical transparency are required. The potential uses for high conductivity PEDOT:PSS formulations include replacements for ITO, semitransparent top electrodes in thin film electronics, top gate electrodes in FETs, and for use as a thick planarisation layer on rough surfaces such as FTO. Sheet resistances as low as 300 /square can be achieved with the addition of conductivity enhancement agents such as dimethylsulfoxide and ethylene glycol.

PH 1000 specifications and MSDS

Resistivity<0.0012 Ω.cm*
Solid content1.0 - 1.3 wt.% (in water)
Viscosity< 50 mPa.s
PEDOT:PSS ratio1:2.5
Particle Size Distribution D50 = 30nm
Work Function4.8 - 5.0 eV
CAS number155090-83-8
Packaging100 ml of solution sealed in a light resistant bottle with temperature indicator

*With use of 5% DMSO by volume as a morphology enhancer

PEDOT:PSS (HTL Solar)

Heraeus Clevios™ HTL Solar is a PEDOT:PSS formulation designed for use in thin film electronics as an interfacial material. The advantage of the HTL Solar formulation is its improved wetting properties, particularly in inverted OPV cells, compared to the other PEDOT:PSS formulations in our catalogue.

HTL Solar specifications and MSDS

Resistivity1 - 10 Ω.cm
Solid content1.0 - 1.3 wt.% (in water)
Viscosity8 to 30 mPa.s
PEDOT:PSS ratio1:2.5
Work Function4.8 - 5.0 eV
CAS number155090-83-8
Packaging100 ml of solution sealed in a light resistant bottle with temperature indicator

PEDOT:complex (HTL Solar 3)

Heraeus Clevios™ HTL Solar 3 is a PEDOT formulation using a alternative counter ionomer to PSS to allow for the dispersion in toluene. HTL Solar 3 is ideal for use with materials or in environments that are water sensitive, such as in glove box environments or for use with perovskite materials.

HTL Solar 3 specifications and MSDS

Resistivity5-500 Ω.cm
Solid content1.5 to 2.5 wt.% (in toluene <0.5% water)
Viscosity<10 mPa.s
PEDOT:PSS ratioN/A
Work function4.4eV - 4.8eV
CAS number155090-83-8
Packaging2 x 25 ml of solution sealed in a light resistant bottles with temperature indicator

Applications

A considerable amount of research has been done into the applications of PEDOT:PSS.

Perovskite photovoltaics

PEDOT:PSS has been used as a hole extraction material in inverted devices in order to facilitate the extraction of charge carriers at the interface between the transparent conductive oxide and the active perovskite layer. Inverted perovskite devices using PEDOT:PSS typically show lower hysteresis than standard architecture devices. In addition recent work on standard architecture devices show that the toluene based PEDOT:PSS can be used as a cheap alternative to spiro-OMeTAD.

Organic photovoltaics

PEDOT:PSS has long been used as a standard material in device fabrication, it has been extensively used with materials such as P3HT and PCDTBT to form the backbone of fundamental research into polymer solar cells. In addition PEDOT:PSS is still used in combination with the state of the art organic photovoltaic materials to push new efficiency limits.

Organic light emitting diodes

The use of PEDOT:PSS in organic light emitting diodes has been widespread for over a decade now and is a well established standard hole injection material. More recent work still uses PEDOT:PSS due to its deep work function allowing for efficient charge injection into white emitting polymers and also host materials for thermaly activated delayed fluorescence materials.

Transparent conductors

PEDOT:PSS has been seen as a potential replacement for expensive transparent metal oxides such as ITO and FTO and has been shown in both organic photovoltaic and perovskite photovoltaic devices to be an effective replacement. In addition, in combination with metallic grid structures sheet resistances comparable to metallic films are possible.

Surface Preparation

For preparation of the surface of a substrate for deposition of PEDOT:PSS you will need the following products: FTO Glass/ITO Glass/Glass/SiO2 substrate, 1.1mm Substrate Rack/2.2mm Substrate Rack (product coming soon), Hellmanex iii, isopropyl alcohol, and UV Ozone Cleaner.

UV Ozone Cleaner

Learn More About the Ossila UV Ozone Cleaner

  • Ultraclean surfaces within minutes
  • Does not cause damage to the sample
  • Simple to use, and with a large cleaning area
  • Just £1950 with FREE worldwide shipping

The following is a step-by-step guide for preparing surfaces for the deposition of PEDOT:PSS, an instructional video is provided below.

  • Sonicate chosen substrate for 5 minutes in hot (70°C) DI water with the addition of 1% Hellmanex
  • Dump-rinse twice in boiling DI water
  • Sonicate chosen substrate for 5 minutes in Isopropyl alcohol
  • Dump-rinse twice in boiling DI water
  • Dry chosen substrate using filtered compressed gas
  • Place the chosen substrate into the UV Ozone cleaner and leave for 10 minutes
Video by Ossila

Thin-Film Deposition of PEDOT:PSS

For the deposition of thin films of PEDOT:PSS on a freshly prepared surface you will need the following products: FTO Glass/ITO Glass/Glass/SiO2 Substrate, Amber Vial, 0.45 µm PES filter, Solvent Safe Syringe, PEDOT:PSS, Micropipette, Spin Coater, and Hot Plate.

  • Filter your PEDOT:PSS solution through the 0.45 µm PES filter into an amber vial (if using HTL Solar 3 use a 0.45 µm PTFE (hydrophobic) filter).
  • Preheat the hot plate to 120°C
  • Place a freshly prepared substrate into the spin coater and set to the desired spin speed.
  • For speeds below 1000 rpm we recommend static spin coating or the solution for higher speeds dynamic spin coating can be done.
  • The substrates should be spun until the films are dry, for PEDOT:PSS films this is typically >30s.
  • Once the spin coating has finished place the samples on the hotplate for 15 minutes to fully dry.
Spin coater

Get the Ossila Spin Coater

  • Designed for the lab: vacuum-free, compact and portable
  • The ultimate plug-and-play spin coater
  • Spin speeds range from 120 to 6000 rpm
  • Just £1950 with FREE worldwide shipping

Obtaining a Uniform Coating

The coating quality of the PEDOT:PSS will be dependent upon several factors. These include the PEDOT formulation you are using, the deposition technique, the surface you are depositing onto and the cleanliness of the surface.

Ideally, the film should be highly uniform across the entire surface with possible variations at the ends of your sample due to edge effects. Sometimes due to the wetting conditions of the PEDOT formulation on the surface, the coating may not be uniform. If this occurs there are several things that can be done. The first is to ensure that the surface of your sample is clean, if possible use a combination of solvent cleaning steps and UV ozone or oxygen plasma treatments (as described above) to ensure a completely clean surface.

If this does not improve the quality of the surface, secondary solvents can be added. For AI 4083 and PH1000 the addition of approximately 10% isopropanol can improve the wetting on surfaces.

Literature

Perovskite photovoltaics

  • Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates, H. J. Snaith et. al. Nature Communications, 4, (2013) DOI: 10.1038/ncomms3761
  • High efficiency stable inverted perovskite solar cells without current hysteresis, M. Grätzel et. al. Energy Environ. Sci. 8, (2015) 2725-2733 DOI: 10.1039/c5ee00645g
  • Employing PEDOT as the p-type charge collection layer in regular organic-inorganic perovskite solar cells, H. J. Snaith et. al. J. Phys. Chem. Lett. 6 (9), (2015) 1666-1673 DOI: 10.1021/acs.jpclett.5b00545

Organic photovoltaics

  • Nanoscale morphology of high-performance polymer solar cells, R. A. J. Janssen, Nano Lett. 5 (4), (2005) 579-583 DOI: 10.1021/nl048120i
  • Bulk heterojunction solar cells with internal quantum efficiency approaching 100%, A. J. Heeger et.al. Nature Photonics, 3, (2009) 297-302 DOI: 10.1038/nphoton.2009.69
  • Single-junction organic solar cells based on a novel wide-bandgap polymer with efficiency of 9.7%, Y. Sun et. al. Adv. Mater. 27 (18), (2015) 2938-2944 DOI: 10.1002/adma.201500647

Organic light emitting diodes

  • Molecular organic light-emitting diodes using highly conducting polymers as anodes, H. Kafafi et. al. Appl. Phys. Lett. 80, (2002) 3844 DOI: 10.1063/1.1480100
  • High-efficiency white-light-emitting devices from a single polymer by mixing singlet and triplet emission, Y. Cao et. al. Adv. Mater. 18, (2006) 1769-1773 DOI: 10.1002/adma.200502740
  • A universal host material for high external quantum efficiency close to 25% and long lifetime in green fluorescent and phosphorescent OLEDs, J. Y. Lee et. al. Adv. Mater. 26, (2014) 4050-4055 DOI: 10.1002/adma.201400347

Transparent conductors

  • Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells, C. W. Chu et. al. Energy Environ. Sci. 5, (2012) 9662-9671 DOI: 10.1039/C2EE22595F
  • Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air, S. Bauer et. al. Nature Materials, 14, (2015) 1032-1039 DOI: 10.1038/nmat4388
  • All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps, F. C. Krebs, Org. Electron. 10 (5), (2009) 761-768 DOI: 10.1016/j.orgel.2009.03.009

To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.

品牌介绍
关于奥西拉 Ossila由有机电子研究科学家于2009年成立,旨在提供组件,设备和材料,以实现智能,高效的科学研究和发现。十多年来,我们很自豪能向全球80多个国家/地区的1000多个不同机构提供产品。 凭借在开发有机和薄膜LED,光伏和FET方面数十年的学术和工业经验,我们知道建立可靠,高效的器件制造和测试过程需要花费多长时间。因此,我们开发了相关的产品和服务包-使研究人员能够快速启动其有机电子产品开发计划。 奥西拉保证 全球免费送货 合格的订单可免费运送到世界任何地方 快速安全调度 通过安全跟踪的快递服务快速配送库存物品 质量保证 由所有设备的免费两年保修提供支持 清除前期定价 超过30种货币的清晰定价,无隐藏成本 大订单折扣 保存超过订单8% $ 10,300.00和10%以上的订单 $ 12,900.00 专家支持 我们内部的科学家和工程师随时准备为您提供帮助 全球信赖 优质的产品和服务。已经向很多人推荐。 卡尔加里大学Gregory Welch博士 优质产品价格合理的客户友好公司! Shahriar Anwar,亚利桑那州立大学 奥西拉团队 David Lidzey教授-主席 作为谢菲尔德大学的物理学教授,David Lidzey教授领导该大学的电子和光子分子材料研究小组(EPMM)。David在其职业生涯中,曾在学术和技术环境中工作,主要研究领域包括混合有机-无机半导体材料和器件,有机光子器件和结构以及溶液处理的光伏器件。在整个学术生涯中,他撰写了220多篇同行评审论文。 James Kingsley博士-董事总经理 James是Ossila的联合创始人兼董事总经理。他拥有量子力学/纳米技术博士学位,并在有机电子领域拥有超过12年的经验,他在有机光伏制造产能方面的工作导致了Ossila的成立并建立了强大的指导精神:加快科学发现的步伐。James对开发创新的设备以及改善可溶液加工的光伏和混合有机-无机设备新材料的可及性特别感兴趣。 Alastair Buckley博士-技术总监 Alastair是谢菲尔德大学的物理学讲师,专门研究有机电子学和光子学。他还是EPMM研究小组的成员,致力于研究功能有机材料的内在优势并将其应用到一系列光电设备中。Alastair的经验并非仅在学术界获得。他曾领导MicroEmissive Displays的研发团队,因此在OLED显示器方面拥有丰富的技术经验。他还是Elsevier的“有机发光二极管”的编辑和撰稿人。 我们的研究科学家 我们的研究科学家和产品开发人员在材料的合成和加工以及设备的制造和测试方面拥有丰富的经验。奥西拉(Ossila)的愿景是与学术界和工业界的研究人员分享这一经验,并提高他们的研究效率。通过提供无需费力设备制造过程的产品和服务,以及能够进行准确,快速测试的设备,我们就可以使科学家们腾出时间专注于他们最擅长的工作-科学。 客户服务团队 客户服务团队负责奥西拉的客户旅程。从创建和提供报价到采购和库存管理,客户服务团队致力于提供一流的客户服务。客户服务团队成员的日常职责包括处理客户订单和价格查询,回答客户查询,安排包裹运输以及将订单更新通知客户。 合作与伙伴关系 请联系客户服务团队以解决所有疑问,包括有关Ossila产品的技术问题或有关制造和测量过程的建议。 位置及设施 奥西拉(Ossila)设在谢菲尔德阿特克利夫(Attercliffe)的Solpro商业园区。 我们在现场运营一个专门建造的合成化学和设备测试实验室,在这里制造我们所有的高纯度,批次特定的聚合物和其他配方。此外,设备制造集群内的专用薄膜和有机电子测试与分析工具套件也位于谢菲尔德EPSRC国家外延设施的1000级无尘室中。 我们所有的电子设备均在现场制造。