PNDI-T10 (also known as PCE9) is a polymer acceptor used in high-efficiency all-polymer solar cells (all-PSCs) and organic field-effect transistors (OFETs).
PNDI-T10 is a family member of polynaphthalene diimide (which is a copolymer of naphthalene diimide with bithiophene and thiophene unit.)
All-PSCs have received great research interest in recent years. This is thanks to the blend of both electron donor and acceptor being polymers in the active layer, and how having complementary absorption covers a wider range of the solar spectrum. Using polymer acceptors (instead of fullerene) in all-PScs also has the advantages of greater morphological stability, superior mechanical properties, and higher capability of being processed with ink-jet printing techniques in flexible devices.
PNDI-T10 has been successfully used in ternary all-PSCs, achieving record performances with PCE of 9% [1]. PNDI-T10 is also a potential candidate for high performance OFET with high electron mobility.
Luminosyn™ PNDI-T10
Luminosyn™ PNDI-T10 is now available.
High molecular weight and high purityPNDI-T10 is purified by Soxhlet extraction with methanol, hexane and chlorobenzene under an argon atmosphere
Large quantity ordersPlan your experiments with the confidence of polymers from the same batch
General Information
Full name | Poly{{[N,N"-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5"-(2,2"-bithiophene)}-ran-{[N,N"-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-2,5-thiophene}} |
Synonyms | PCE9, PNDI-Th10, PNDI(2OD)-T10 |
Chemical formula | (C62H88N2O4S2)0.9 ▪ (C58H86N2O4S)0.1 |
CAS number | 1977539-03-9 |
HOMO / LUMO | HOMO = -6.40 eV, LUMO = -4.10 eV [1] |
Classification / Family | PNDI polymers, Organic n-type semiconducting materials, PNDI polymers, Organic photovoltaics, All Polymer solar cells (all-PSCs), Electron-acceptor polymers, OFETs, Perovskite solar cells. |
Solubility | Soluble in chloroform, chlorobenzene, dichlorobenzene |
Chemical Structure
MSDS Documentation
PNDI-T10 MSDS sheet
Pricing
Batch | Quantity | Price |
M2086A1 | 100 mg | £300.00 |
M2086A1 | 250 mg | £599.00 |
M2086A1 | 500 mg | £1080.00 |
M2086A1 | 1 g | £1970.00 |
Batch details
Batch | Mw | PDI | Stock Info |
M2086A1 | 189,514 | 2.40 | In stock |
Literature and Reviews
- 9.0% power conversion efficiency from ternary all-polymer solar cells, Z. Li et al., Energy Environ. Sci., 10, 2212 (2017); DOI: 10.1039/c7ee01858d.
- High Performance All-Polymer Solar Cells by Synergistic Effects of Fine-Tuned Crystallinity and Solvent Annealing, Z. Li et al., J. Am. Chem. Soc., 138 (34), 10935–10944 (2016); DOI: 10.1021/jacs.6b04822.
- Energy-effectively printed all-polymer solar cells exceeding 8.61% efficiency, Y. Lin et al., Nano Energy 46, 428-435 (2018); https://doi.org/10.1016/j.nanoen.2018.02.035.
- High-performance all-polymer solar cells based on fluorinated naphthalene diimide acceptor polymers with fine-tuned crystallinity and enhanced dielectric constants, X. Xu et al., Nano Energy 45, 368-379 (2018); https://doi.org/10.1016/j.nanoen.2018.01.012.
- High‐Performance and Stable All‐Polymer Solar Cells Using Donor and Acceptor Polymers with Complementary Absorption, Z. Li et al., Adv. Energy Mater., 7 (14), 201602722 (2017); https://doi.org/10.1002/aenm.201602722
- Effects of incorporating different chalcogenophene comonomers into random acceptor terpolymers on the morphology and performance of all-polymer solar cells, Y. An et al., Polym. Chem., 9, 593-602 (2018); DIO:10.1039/C7PY01907F.
To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.