8-Hydroxyquinolinolato-lithium (Liq), coupled with aluminium (Al), is commonly used as an electron injection layer (EIL) material in organic electronic devices, particularly OLEDs. Normally, only a very thin layer (1-2 nm) Liq is needed for efficient electron injection from the electrode to the electron transport layer (ETL).
Liq/Al has also been widely known to be an effective cathode system towards general electron transport layer materials. It has also been reported that ultrathin Liq interlayers can greatly enhance the operational stability of light-emitting diodes [2].
Electron transport layer (ETL) materials, Organic Light-Emitting Diodes, Organic electronics, Sublimed materials
Product Details
Purity
>99% (sublimed)
>98% (unsublimed)
Melting point
366-368 ºC (lit.)
TGA
Td ≥ 430 oC (5%)
DSC
Onset: 365 ± 1 oC
Colour
Light yellow powder
*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.
*For chemical structure information, please refer to the cited references.
Characterisation
Pricing
Grade
Order Code
Quantity
Price
Sublimed (>99% purity)
M731
1 g
£98.00
Unsublimed (>98% purity)
M732
5 g
£111.00
Sublimed (>99% purity)
M731
5 g
£366.00
MSDS Documentation
8-Quinolinolato lithium MSDS sheet
Literature and Review
Lithium-Quinolate Complexes as Emitter and Interface Materials in Organic Light-Emitting Diodes, C. Schmitz et al., Chem. Mater., 12, 3012-3019 (2000); doi: 10.1021/cm0010248
Operational stability enhancement in organic light-emitting diodes with ultrathin Liq interlayers, DPK. Tsang et al., Sci Rep., 6: 22463 (2016); doi:10.1038/srep22463.
Study of Sequential Dexter Energy Transfer in High Efficient Phosphorescent White Organic Light-Emitting Diodes with Single Emissive Layer, J-K. Kim et al., Sci. Reports, 4, 7009 (2014); DOI: 10.1038/srep07009.
Luminous efficiency enhancement in blue phosphorescent organic light-emitting diodes with an electron confinement layers, J-S. Kang et al., Optical Materials 47, 78–82 (2015); doi:10.1016/j.optmat.2015.07.003.
High efficiency green phosphorescent top-emitting organic light-emitting diode with ultrathin non-doped emissive layer, X. Shi et al., Org. Electronics, 15, 2408–2413 (2014); DOI: 10.1016/j.orgel.2014.07.001.
Highly efficient blue organic light-emitting diodes using dual emissive layers with host-dopant system, B. Lee et al., J. Photon. Energy. 3(1), 033598 (2013), doi: 10.1117/1.JPE.3.033598.
High efficient white organic light-emitting diodes using BCzVBi as blue fluorescent dopant, Y. Kim et al., J Nanosci. Nanotechnol., 8(9), 4579-83 (2008); DOI: 10.1166/jnn.2008.IC67. .
Multi-carbazole encapsulation as a simple strategy for the construction of solution-processed, non-doped thermally activated delayed fluorescence emitters, J. Luo et al., J. Mater. Chem. C, 2016, DOI: 10.1039/C6TC00418K.
Purely organic electroluminescent material realizing 100% conversion from electricity to light, H. Kaji et al., Nat. Commun., 6:8476 (2015); DOI: 10.1038/ncomms9476.
To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.