N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine, also known as NPB or NPD, has been used intensively in OLEDs and other organic electronic devices such as polymer photovoltaics (OPV) and perovskite solar cells for its outstanding hole transport capability.
NPB is considered as one of the best materials within its competition, and has become the most common-used material in OLEDs" application. This is due to its increased Tg up to 95 °C, which enhances device morphology and is beneficial for device longevity [1].
Triphenylamines, Naphtalene, Hole-transport layer materials, Electron block layer materials, Hole-injection layer materials, Organic light-emitting diodes (OLEDs), OFETs, Organic Photovoltaics, Polymer solar cells, Perovskite solar cells
Product Details
Purity
> 99.5% (sublimed)
> 98.0% (unsublimed)
Melting point
279-283 °C (lit.)
Appearance
Off-White powder
*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.
*For chemical structure information please refer to the cited references.
Characterisation
Pricing
Grade
Order Code
Quantity
Price
Sublimed (>99%)
M361
1 g
£139.00
Sublimed (>99%)
M361
5 g
£369.00
Unsublimed (>98%)
M362
5 g
£160.00
MSDS Documentation
NPB MSDS sheet
Literature and Reviews
Organic electroluminescent devices with improved stability, S. A. Van Slyke et al., Appl. Phys. Lett. 69, 2160 (1996); http://dx.doi.org/10.1063/1.117151.
High efficiency white organic light-emitting devices by effectively controlling exciton recombination region, F. Guo et al., Semicond. Sci. Technol. 20, 310–313 (2005).
Manipulating Charges and Excitons within aSingle-Host System to Accomplish Efficiency/CRI/Color-Stability Trade-off for High-PerformanceOWLEDs, Q. Wang et al., Adv. Mater., 21, 2397–2401 (2009).
Efficient organic light-emitting devices with platinum-complex emissive layer, X. Yang et al., Appl. Phys. Lett., 98, 033302 (2011); doi: 10.1063/1.3541447.
Highly Power Efficient Organic Light-Emitting Diodes with a p-Doping Layer, C-C. Chang et al., Appl. Phys. Lett., 89, 253504 (2006); doi: 10.1063/1.2405856.
Exceedingly efficient deep-blue electroluminescence from new anthracenes obtained using rational molecular design, S-K. Kim et al., J. Mater. Chem., 18, 3376–3384 (2008). DOI: 10.1039/B805062G.
Effect of type-II quantumwell of m-MTDATA/a-NPD on the performance of green organic light-emitting diodes, J. Yang et al., Microelectronics J.l40, 63–65 (2009). doi:10.1016/j.mejo.2008.08.004.
Effect of bulk and planar heterojunctions based charge generation layers on the performance of tandem organic light-emitting diodes, Z. Ma et al., Org. Electronics, 30, 136-142 (2016). doi:10.1016/j.orgel.2015.12.020
Blue and white organic electroluminescent devices based on 9,10-bis(2′-naphthyl)anthracene, X. H. Zhang et al., Chem. Phys. Lett., 369 (3-4) 478-482 (2003), doi:10.1016/S0009-2614(02)02042-0.
Highly Efficient and Stable Red Organic Light-Emitting Devices Using 9,10-Di(2-naphthyl)anthracene as the Host Material, H. Tang et al., Jpn. J. Appl. Phys. 46 1722 (2007), http://iopscience.iop.org/1347-4065/46/4R/1722.
C60/N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine:MoO3 as the interconnection layer for high efficient tandem blue fluorescent organic light-emitting diodes, X. Wu et al., Appl. Phys. Lett. 102, 243302 (2013); http://dx.doi.org/10.1063/1.4811551.
High-Performance Hybrid White Organic Light-Emitting Devices without Interlayer between Fluorescent and Phosphorescent Emissive Regions, N. Sun et al., Adv. Mater., 26, 1617–1621 (2014)
Single-Doped White Organic Light-Emitting Device with an External Quantum Efficiency Over 20%, T. Fleetham et al., Adv. Mater., 25, 2573–2576 (2013).
To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.