1,3-bis[2-(4-tert-butylphenyl)-1,3,4-oxadiazo-5-yl]benzene (OXD-7) is a well known electron-transporting material due to the electron-accepting property of the oxadiazole units. Together with poly(9-vinylcarbazole) (PVK, electron donating), OXD-7 (electron withdrawing) is the most widely used hybrid-type host due to its good solubility and film morphology by the bulky tert-butyl units.
OXD-7 has also been used as an ultraviolet emitter, with MoO3 as hole injection and buffer material showing relatively high external quantum efficiency [1].
*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.
*For chemical structure information, please refer to the cited references.
Characterisation
Pricing
Grade
Order Code
Quantity
Price
Sublimed (>99% purity)
M451
250 mg
£139.00
Sublimed (>99% purity)
M451
500 mg
£238.00
Sublimed (>99% purity)
M451
1 g
£389.00
MSDS Documentation
OXD-7 MSDS sheet
Literature and Reviews
<Highly efficient ultraviolet organic light-emitting diodes and interface study using impedance spectroscopy, Q. Zhang et al., Electron Optics, 126 (18), 1595-1597 (2015).
Small Molecule Host Materials for Solution Processed Phosphorescent Organic Light-Emitting Diodes, K. Yook et al., Adv. Mater., 26, 4218–4233 (2014).
High power efficiency solution-processed double-layer blue phosphorescent organic light-emitting diode by controlling charge transport at the emissive layer and heterojunction, K. Yeoh et al., Phys. Status Solidi RRL 7, No. 6, 421–424 (2013) / DOI 10.1002/pssr.201307089.
Highly efficient solution processed blue organic electrophosphorescence with 14lm∕W luminous efficacy, M. K. Mathai et al., Appl. Phys. Lett. 88, 243512 (2006); http://dx.doi.org/10.1063/1.2212060.
Efficient solution-processed small-molecule single emitting layer electrophosphorescent white light-emitting diodes, L. Hou et al., Org. Electronics, 11 (8), 1344-1350 (2010), doi:10.1016/j.orgel.2010.05.015.
High efficiency, solution-processed, red phosphorescent organic light-emitting diodes from a polymer doped with iridium complexes, M. Song et al., Org. Electronics, 10 (7), 1412–1415 (2009), doi:10.1016/j.orgel.2009.07.012.
Single emissive layer white phosphorescent organic light-emitting diodes based on solution-processed iridium complexes, W. Cho et al., Dyes and Pigments, 108, 115-120 (2014), doi:10.1016/j.dyepig.2014.04.033.
Efficient organic light-emitting devices with platinum-complex emissive layer, X. Yang et al., Appl. Phys. Lett., 98, 033302 (2011); doi: 10.1063/1.3541447.
Cyclometalated Ir(III) Complexes for High-Efficiency SolutionProcessable Blue PhOLEDs, V. Kozhevnikov et al., Chem. Mater., 25, 2352−2358 (2013); dx.doi.org/10.1021/cm4010773.
Efficient phosphorescent polymer light-emitting devices using a conjugated starburst macromolecule as a cathode interlayer, X. Zhang et al., RSC Adv., 6, 10326 (2016); DOI: 10.1039/c5ra19156d.
Water-Soluble Lacunary Polyoxometalates with Excellent Electron Mobilities and Hole Blocking Capabilities for High Efficiency Fluorescent and Phosphorescent Organic Light Emitting Diodes, M. Tountas et al., Adv. Funct. Mater. 2016; DOI: 10.1002/adfm.201504832.
New sulfone-based electron-transport materials with high triplet energy for highly efficient blue phosphorescent organic light-emitting diodes, S. Jeon et al., J. Mater. Chem. C, 2, 10129-10137 (2014); DOI: 10.1039/C4TC01474J.
To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.