5,10,15,20-Tetraphenylbisbenz[5,6]indeno[1,2,3-cd:1′,2′,3′-lm]perylene (DBP), also known as tetraphenyldibenzoperiflanthene, is a promising organic small-molecule semiconductor. It can be used as either an electron donor or acceptor for highly efficient photovoltaic and OLED applications.
With perylene as an electron-rich core and extended conjugations, DBP can also be used in photovoltaic light-emitting diodes (PVOLEDs) devices as an electron-donating layer (EDL) material.
*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.
*For chemical structure information, please refer to the cited references.
Pricing
Grade
Order Code
Quantity
Price
Sublimed (>99.0% purity)
M2101A1
250 mg
£299.00
Sublimed (>99.0% purity)
M2101A1
500 mg
£509.00
Sublimed (>99.0% purity)
M2101A1
1 g
£866.00
MSDS Documentation
DBP MSDS sheet
Literature and Reviews
High-Efficiency White Organic Light-Emitting Diodes Based on a Blue Thermally Activated Delayed Fluorescent Emitter Combined with Green and Red Fluorescent Emitters, T. Higuchi et al., Adv. Mater., 27, 2019–2023 (2015); DOI: 10.1002/adma.201404967.
High efficiency red organic light-emitting devices using tetraphenyldibenzoperiflanthene-doped rubrene as an emitting layer, K. Okumoto et al., Appl. Phys. Lett. 89, 013502 (2006); doi: 10.1063/1.2218833.
High-Efficiency WOLEDs with High Color-Rendering Index based on a Chromaticity-Adjustable Yellow Thermally Activated Delayed Fluorescence Emitter, X. Li et al., Adv. Mater., 28, 4614–4619 (2016); DOI: 10.1002/adma.201505963.
Efficient solution-processed red all-fluorescent organic light-emitting diodes employing thermally activated delayed fluorescence materials as assistant hosts: molecular design strategy and exciton dynamic analysis, D. Chen et al., J. Mater. Chem. C, 5, 5223-5231 (2017); DOI: 10.1039/C7TC01164D.
Organic Solar Cells with Open Circuit Voltage over 1.25 V Employing Tetraphenyldibenzoperiflanthene as the Acceptor, A. Bartynski et al., J. Phys. Chem. C, 120 (34), 19027–19034 (2016); DOI: 10.1021/acs.jpcc.6b06302.
To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.