N,N"-Dimethylquinacridone (DMQA) is a green dopant material used in OLEDs. Highly stable and longer-lifetime OLED devices have been achieved by using DMQA as the dopant to a double host (aminoanthracene and Alq3). It is believed that DMQA can prevent excimer formation, thus prolonging the the lifetime of the devices.
By using DMQA as a green dopant, very high efficiency OLEDs with a luminance of greater than 88,000 cd/m2, EQE of 5.4% and current efficiency of 21.1 cd/A have been achieved. DMQA has also been used in green light photodetectors for practical applications, such as photo sensors and chemical sensors.
Green dopant materials, OLEDs, Photodetectors, Organic electronics
Product Details
Purity
>99% (sublimed)
Melting point
286 °C (dec.)(lit.)
Colour
Red powder/crystals
*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.
*For chemical structure information please refer to the cited references
Pricing
Grade
Order Code
Quantity
Price
Sublimed (>99% purity)
M971
1 g
£139.00
Sublimed (>99% purity)
M971
5 g
£556.00
MSDS Documentation
DMQA MSDS sheet
Literature and Reviews
Low dark current small molecule organic photodetectors with selective response to green light, D-S. Leem et al., Appl. Phys. Lett., 103, 043305 (2013); doi: 10.1063/1.4816502 .
Doped organic electroluminescent devices with improved stability, J. Shi et al., Appl. Phys. Lett., 70, 1665 (1997); doi: 10.1063/1.118664.
Highly efficient tris(8-hydroxyquinoline) aluminum-based organic light-emitting diodes utilized by balanced energy transfer with cosensitizing fluorescent dyes, Y. Park et al., Appl. Phys. Lett., 95, 143305 (2009); doi: 10.1063/1.3243689.
Triplet to singlet transition induced low efficiency roll-off in green phosphorescent organic light-emitting diodes, Z. Su et al., Thin Solid Films 519, 2540–2543 (2011); doi:10.1016/j.tsf.2010.12.008.
Green organic light-emitting diodes with improved stability and efficiency utilizing a wide band gap material as the host, H. Tang et al., Displays 29, 502–505 (2009); doi:10.1016/j.displa.2008.05.001.
Improved efficiency for green and red emitting electroluminescent devices using the same cohost composed of 9,10-di(2-naphthyl)anthracene and tris-(8-hydroxyquinolinato)aluminum, J. Zhu et al., Physica E 42, 158–161 (2009); doi:10.1016/j.physe.2009.09.020.
To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.